Python Basics

First Edition, 2021

Programming

P. Lee

https://pyongwonlee.com/

Contents

1. Python Programming StrUCtUMEcviiriiii i e e e aneanes 3
B SV oo T I B T} = B IV o 1T PP 5
I J O o 7= o=) (o] =3P 12
e I 1 15
T W 0= 21
T T T uf e = o = 23
7. Lists, Dictionaries — Advanced FEAtUIESiiiiiiiiiiiiiii i i ri s raeeraaeernnaes 25
S TR @] o) ol o] I o 1P 28
O, FUNCHIONS e 31
O 1 T T LU= P 35
11. OOP (Object Oriented Programming) «oueiiueiieiiie i it it ieeiteitesaaesiaeeaaeeateeaaeanaeanes 38
12, OO0P - ENCAPSUIAtiON cu i i e e e e e e e e 43
HRC TN O 101 = o] o a1 L0 1=] | o] o 45
I O 10] o [oY a1 o) =1 o Lol 47
ST O 10 e =] 1V o 0 To] o o] 01 1= o o S 50
I T O 10] o =1 o o] o] = 52
17. Sample applications with the random module ... 55
18. Python Advanced Features - DiCtionaries. .. .c.oviiiiiiiii i e 57
19. Python Advanced Features - Lambdaccoviiiiiiiiiii e 61
b4 0 B = g o]l =T T 1 o PP 65
B R o =Y T 1L o T = ol PP 68
22. OOP Advanced — Decorators and Properties....ccuviiiiiiiiiiii i e 73
23, datetime MOdUIE e 77
24. Operator Overloading - AdVanCed.......ccvieiiiiiiiiiie s rae e raesaneanaaneaneanens 81
25. Working with Database with SQLItEcciiviiiiiii i aeenens 87

© P. Lee, 2021

1. Python Programming Structure

Python is a general programming language that can be used to develop many
different applications such as web, gaming, and machine learning.

Modules: Python code can be placed in separate files, called modules.

¢ Functions and classes in a different module need to be imported before using

them.

¢ The name of the module can be accessed using the special built-in variable:
__hame___

e The starting module has a special name: _ _main__

import math

print(math. name)

print(__name_)

if (__name__ ' _main__"):
print('You are in a main module. ')

Blocks of Code: You can specify the block of code using the indentation.

e Vif",“for in”, or “while" statement has its own block that specifies the boundary.
e A function or a class also has its own boundary.

isPositiveNumber (number):
if number > @:

return
else:

return

print(isPositiveNumber(10))
print(isPositiveNumber(-10))

<Note> Change the indentation of the code and see how the code works.

© P. Lee, 2021

e A variable is a name of a container that has a value.
e Variable names should
o start with an alphabet letter or underscore
o contain only alpha-numeric (a-z,A-Z,0-9) and underscore (_)
o not a keyword such as if, while, for, etc.
¢ Names are case-sensitive
e You can create a variable at any time but need to be created before using it.
o A variable is created when a value is assigned to it for the first time.
e You do not need to specify the type of a variable. A variable can point to any
type of data.
e Use the "type()” function to check the data type that a variable points to.

a =

print(a, type(a))
= 'Hello'

A = '"World'

print(a, type(a))
print(A, type(A))

© P. Lee, 2021

2. Python Data Types

Python has many built-in (native) data types:

e Numbers: integers(1,2,3 ...), floating-point numbers (1.1, 1.2, 1.3 ...), complex
numbers (1 + 2j)

e Strings: a text, a sequence of characters (letters)

e Lists: a sequence of values or objects

e Tuples: a sequence of values but cannot be modified once created

e Dictionaries: a sequence of key/value pairs

Some other native types:

e Sets: a sequence of values; do not allow duplicate values
e Byte Arrays: used for images and videos

Strings are surrounded by single quotes or double quotes.
Triple Singe Quote => multi-line string
The '\ is used to escape special characters such as a new line ‘\n’ or a tab "\t'.

greeting = 'Hello ' + "World"
print(greeting)

greetingl = 'Hello\nWorld\nGood morning'
print(greetingl)

greeting2 = "'’
Hello

World

Good morning

print(greeting2)

© P. Lee, 2021

String as a sequence of characters or letters

e String can be thought as a list of characters.

greeting = 'Hello, World'
print(greeting, len(greeting), type(greeting))

for letter in greeting:
print(letter)

Escape Characters

e Insert some characters as the part of a string can be tricky. The trick is to use
the backslash '\’

text = "I\'m hungry.\n'

text += "\"Me too.\""
print(text)

Modifying strings with methods

e A string is a class and has many methods
e In general, string methods do not modify the underlying string itself. The
methods return a new modified string. - -Be careful!!

greeting = 'HellLo world, good MORNING!'
print(greeting.lower())

print(greeting.upper())
print(greeting.capitalize())
print(greeting)

Common String Methods

e Remove spaces from the beginning or the end
o string.strip() => returns so-called trimmed sting

© P. Lee, 2021

e Split and Joining Strings
o string.split() => list of strings split by space
o string.split(separator) => list of strings split by the separator
o separator.join(list of strings) => combine a list of strings to a single string

numbers = '1 2 3 4 5'
print(numbers.split())

fruits = 'apple,pear,mango’
fruitlist = fruits.split(',")
print(fruitList, len(fruitList))
print(fruitList[1])
print('-"'.join(fruitlist))

(Example) Joining the list of data by a new line and print them

getInfo(name, age):

return name} is {age} years old.'

people = []
people.append(getInfo('A’, 10))
people.append(getInfo('B', 20))
people.append(getInfo('C’, 30))
print('\n'.join(people))

(Example) Splitting text line by line and stripping starting/ending spaces

fruits = ' apple \n pear \n SENENRE]
fruitlList = fruits.split('\n")

for fruit in fruitlist:
print(fruit)
print(fruit.strip())

¢ Finding the text
o string.find(): searches the string for a specified value and returns the
position (0-based index)

e Replacing the text
o string.replace()

© P. Lee, 2021

greeting = 'Hello, world'
print(greeting.find('world"))
print(greeting.find('World"))

print(greeting.lower().find('world"))

print(greeting.replace('world’', 'earth"))

In the old version of Python, the string.format() method is used to replace the
values inside the string.

e Use curly braces with the index {0}, {1} ... to specify the placeholder
o Each variable matches with the placeholder by the index
o {0} => the first argument of the format() method
o {1} => the second argument of the format() method

fruitl
pricel
fruit2
price2

messagel = 'The price of i dollars.'.format(fruitl, pricel)
message2 = 'The price of i dollars.'.format(fruit2, price2)
print(messagel)
print(message?2)

[Note] Do not use this syntax if you use Python 3.6 or later. This is the reference
only.

In the newer version of Python (3.6 and later), you can use the prefix ‘f’ before the
spring and provide values or variables directly. It is called “string interpolation”.

e String interpolation is the preferred way.

© P. Lee, 2021

'apple’
10
'banana’
20

messagel "The price of {fruitl} is {pricel} dollars.'
message2 "The price of {fruit2} is {price2} dollars.'
print(messagel)
print(message2)

Numbers can be an integer, a floating-number, or a complex humber.

e If necessary, the numbers become “float” from “int”. (automatic conversion)

10

3.5
a = 10/3
com = 3 + 5
print(i, type(i))
print(f, type(f))
print(a, type(a))
print(com, type(com))

e Formatting numbers

= 12003.34564
print(a)
print(f'{a)

print(f'{a ")
print(f'{a '
print(f'You have ${a

)

© P. Lee, 2021

10

e Boolean values represent 2 values: True or False
e Itis used in branching statements such as “if”

f, type(t), type())

> 9)
)
1= 9)
)

[Example] Boolean value with if statement

getInterestRate(amount):
if amount >= 1000:

return 0.02
else:

return 0.01

amounts = [500, 5000]

for amount in amounts:
interestAmount = amount * getInterestRate(amount)
print(interestAmount)

Each type can be converted into another type if the context makes sense. The
process is also called “casting”.

e Conversion functions: int(), str(), bool()
¢ Converting to Boolean value is not intuitive. Only empty string or 0 is False.

© P. Lee, 2021

11

i = int("10")
s = str(10.3)
print(i, type(i))

print(s, type(s))

print(bool('True'), bool('False'), bool(''), bool('Hello"))
print(bool(1), bool(®), bool(-1))

[Example] Splitting a string value to a string array => convert each string value to
a number and get a total.

numberText ‘1,2,3,4,5,6,7,8,9,10"'
numberList = numberText.split(',")
total = ©

for number in numberList:
total = total + int(number)

print(total)

print(type(numberText))
print(type(numberlList))

© P. Lee, 2021

12

3. Operators

Arithmetic Operators -- the result is a numeric value

+ (add) - (subtraction)
* (multiplication) / (division) // (floor division) % (modulus)
e ¥* (exponential)

print(a + b, a - b, a * b)
print(a / b, a // b, a % b)
print(a ** b)

Comparison Operators -- the result is a Boolean value

== (equal) I= (not equal)
o < <= > >=

print(a == b, a !=b, a > b, a < b)

Logical Operators

e Logical operators work with Boolean values and the result is also a Boolean
value.
e and or not

print(

print(
print(not

© P. Lee, 2021

13

Assignment Operators

Assign the value (right side) to the variable (left side)
A variable points to the value after the assignment
° = 4= -= * = /= 0/0= XK =

Multi assignment

e Python provides some special syntax to assign values to multiple variables in a
single line.

b = c = "Hello"
print(a, b, c)

a, b, c = "Apple", "Pear", "Banana"
print(a, b, c)

a, b, ¢ = ["Banana", "Pear", "Apple"]
print(a, b, c)

Operator Precedence

e () - parenthesis

e */% - multiply, division

o + - - add, subtract

e ==l=<<=>>= - comparison operators
e and - logical AND

e oOr - logical OR

o = - assignment

© P. Lee, 2021

14

print(1 + 2 * 3)
print(1 + 2 / 2 * 2)

print(1 == 2 or 3 == 3 and 4 > 1)

Membership Operators -> The result is a Boolean value.

e in not in

print(3 in [1,2,3,4,5])

print('a' not in ['a','b","'c'])

© P. Lee, 2021

15

4. Lists

Lists are used to store multiple values in a single name (variable).

e Alist is an object and has many methods.

e Alist is created by using the square brackets [] and separating values by a
comma.

e A list can have duplicate values.

e Use the “len()” function to get the number of items in the list.

Each item in a list is indexed, which means you can access each item with an index.

e The first item has an index of [0], not [1].
o Therefore the index of the last item is the length of a list minus 1.

fruits = ['mango’, 'apple', 'pear', ‘'apple’', 'banana’]

print(fruits, len(fruits), type(fruits))
print(fruits[@], fruits[len(fruits)-1])

A list can contain different data types.

e But it is not a recommended practice.

fruits = ['mango', 2, 'banana', 1]

print(f'{fruits[@]} is {fruits[1]} dollars.')
print(f'{fruits[2]} is {fruits[3]} dollars.")

A list is changeable. You can add, remove, and update the items at any
time.

e You can create a list without any items. - Just do not specify any item inside [].

fruits = ['mango’, 'banana']

fruits[1] = 'apple’
print(fruits)

© P. Lee, 2021

16

fruits = []
fruits.append('apple')

fruits.append('mango"')
print(fruits)
fruits.insert(1, 'pear')
print(fruits)

Removing items from a list

e It is easy to remove numbers and strings with the “remove()” method.
¢ Another way to delete an item is to use the del keyword with an index.

fruits = ['mango', 'banana', 'apple', 'pear', ‘'apple']
fruits.remove('apple')

print(fruits)

fruits.remove('apple')

print(fruits)

fruits = ['mango’, 'banana’', 'apple’', ‘pear', 'apple’]
del fruits[2]

print(fruits)

del fruits[len(fruits)-1]

print(fruits)

fruits = ['mango’', 'banana', 'apple', 'pear', 'apple']
fruits.clear()
print(fruits)

Looping through a list

e The for loop does not require an index.

© P. Lee, 2021

17

fruits = ['mango’', 'banana', 'apple', ‘'pear', ‘'apple']

for £ in fruits:
print(f)

for index in range(len(fruits)):
print(index, fruits[index])

Sorting a list

e list.sort(reverse, key)
o reverse: True or False (default)
o key: a function to specify the sorting criteria - advanced feature (ignore
now)
e sort() updates the current list itself.

fruits = ['mango’, 'banana', 'apple’', 'Melon', 'pear', 'Apple’]
fruits.sort()
print(fruits)

numbers = [10, 3, -5, 0, 22, 15]
numbers.sort(reverse=)
print(numbers)

numbers = [10, 3, -5, 0, 22, 15]
numbers.reverse()
print(numbers)

© P. Lee, 2021

18

e The range() function creates a sequence of numbers with a start value, a stop
value (not included), and a step value.

r = range(10)
print(r, type(r))

= range(1, 10)
print(r, type(r))

= range(1l, 21, 4)
print(r, type(r))

The return value is not a list object. -- It is a range object.

e You can convert a range object to a list object.
o This technique is commonly used to get a list of humbers.

= range(10)
1 = list(r)
print(r, type(r), 1, type(l))

1.append(10)
print(1l)
r.append(10)

odd_number_range = range(1l, 100, 2)

odd_numbers = list(odd_number_range)
print(odd_numbers)

© P. Lee, 2021

19

The range object can be used with the for loop.

e It is a common practice to loop through a list with an index using the range
object.

names = ['A', 'B', 'C', 'D', 'E']
for index in range(len(names)):
print(index, names[index])

Person:
__init_ (self, name):
.name = name

people = [Person('A"'), Person('B"'), Person('C')]
print(people)

people.remove(Person('B"))

print(people)

Even though the names of Person objects are the same, the code will fail because
they are actually different objects. To remove the object, you can use an index or
you need to use the same object from the list.

Person:
__init_ (self, name):
.name = name
__repr__(self):
return .name

people = [Person('A'), Person('B'), Person('C")]
print(people)

people.remove(people[1])

print(people)

del people[©@]

print(people)

© P. Lee, 2021

20

But there is another problem. You need to know the index. You only know the name
of the person is ‘B’ but do not know where this person is located in a list.

The main problem is to understand how objects are equal.

¢ Numbers and strings are used to compare values to check the equality.
e Objects are equal when they are exactly the same object - points to the same
memory address.

print(Person('A") == Person('A"))

b = Person('B")
people = [Person('A"), b, Person('C")]
print(b == people[1])

You can modify the default behavior by overriding the __eq__ method in your
custom class.

Person:
__init_ (self, name):
.name = name
__eq__(self, other):
return .name == other.name

print(Person('A") == Person('A"))

Here is the final code to delete the object in a list.

Person:
__init_ (self,
.hame = name
__repr__(self):
return .hame
__eq__(self, other):
return .nhame == other.name

people = [Person('A'), Person('B"'), Person('C')]
print(people)

people.remove(Person('B"))

print(people)

© P. Lee, 2021

21

5. Tuples

Tuple is similar to List but cannot be changed after it is created.

e It uses parentheses and comas (, , ,) and allows duplicates.
e A tuple can contain different data type values.

fruitlList = ['apple', 'pear']
fruitTuple = ('apple', 'pear')

print(fruitList, type(fruitlList))
print(fruitTuple, type(fruitTuple))

You can access a tuple with an index just like a list.

fruits = ('mango', 'apple', 'pear', 'apple', 'banana')

print(fruits, len(fruits), type(fruits))
print(fruits[0], fruits[len(fruits)-1])

List vs. Tuple

e List: mutable, variable length
e Tuple: non-mutable, fixed length

e A tuple is faster and safer to work with -- if you know items that are not
changed in advance.

fruits = ('mango', 'apple', 'pear')

fruits[2] = 'banana’

© P. Lee, 2021

22

Looping through a tuple

fruits = ('mango', 'apple', 'pear')

for £ in fruits:
print(f)

Accessing the range of indexes in tuples and lists:

e The end index is not included.

fruits = ('mango’, 'apple', 'pear', 'apple', 'banana‘)
print(fruits[1:3], fruits[2:], fruits[:4])

fruits = ['mango', 'apple', 'pear', 'apple', 'banana’]
print(fruits[1:3], fruits[2:], fruits[:4])

© P. Lee, 2021

23

6. Dictionaries

A dictionary is a sequence of Key/Value pairs.

e A dictionary is created by using curly braces { }.
e Items are separated by a comma.
e A key and a value are separated by a colon.

e Accessing an item in a dictionary - Use the key.

fruits = { 'apple': 1, 'pear': 2, 'banana': 0.5 }

print(fruits, len(fruits), type(fruits))
print(fruits['apple'], fruits['banana’'])

Adding, Editing, and Removing items in a dictionary

fruits = { 'apple': 1, 'pear': 2 }
fruits['banana'] = 0.5
print(fruits)

fruits['pear'] = 1.5

print(fruits)

fruits = { 'apple': 1, ‘'pear': 2, 'banana‘': 0.5 }
del fruits['pear']
print(fruits)

fruits = { 'apple': 1, 'pear': 2, ‘'banana‘': 0.5 }
fruits.clear()
print(fruits)

Looping through a dictionary

fruits = { 'apple': 1, 'pear': 2, 'banana‘': 0.5 }
for £ in fruits:

print(f)
print(f'{f} is {fruits[f]} dollars')

© P. Lee, 2021

24

Getting keys as a list -- keys()

fruits = { 'apple': 1, 'pear': 2, 'banana‘': 0.5 }

keys = list(fruits.keys())
print(keys[0])
print(keys[1])

for key in keys:
print(key, fruits[key])

Getting values as a list -- values()

fruits = { 'apple’': 1, 'pear': 2, ‘'banana': 0.5 }

values = list(fruits.values())
print(values[9])

print(values[1])

for value in values:
print(value)

© P. Lee, 2021

25

7. Lists, Dictionaries — Advanced Features

(Example) 2 dimensional matrix

1 2 3
4 5 6
7 8 9

my_3x3_matrix = [[1,2,3]1,[4,5,61,[7,8,9]]

print(my_3x3_matrix)

print(my_3x3_matrix[0][0])
print(my_3x3_matrix[0][1])
print(my_3x3_matrix[1][2])

row_count = len(my_3x3_matrix)
print(row_count)

for row in my_3x3_matrix:
column_count = len(row)
print(column_count, row)

You can transform a list to another list with for loop.

fruits = ['apple’', ‘pear’', 'mango’]
fruits_upper = []

for f in fruits:
fruits_upper.append(f.upper())
print(fruits_upper)

© P. Lee, 2021

26

The comprehension syntax can do the same job in a single line.

fruits = ['apple', 'pear', 'mango']

fruits_upper = [f.upper() for f in fruits]

print (fruits_upper)

Comprehension can be used for filtering.

e Creating a smaller list from an original list with the items that match with the
condition.

fruits

= ['apple', 'pear', 'mango', 'orange']
fruits_1 =

[]

for f in fruits:
if f ["apple', 'orange']:
fruits_1.append(f)

print(fruits_1)

The code can be done using the comprehension.

fruits = ['apple', 'pear', 'mango', 'orange']

fruits_1 = [f for f in fruits if f ['apple’, ‘'orange']]
print(fruits_1)

© P. Lee, 2021

Product:
__init_ (self, name):
.name = name
getProductInfo(self):
return f'The product name is

ProductlList:
__init__ (self, products):
.products = products

getProductListl(self):
result = "'
for product in products:

result += product.getProductInfo() + '\n'
return result

getProductList2(self):
return '\n'.join([product.getProductInfo() for product in

products = [Product('Bread'), Product('Milk"), Product('Meat")]
productlList = ProductList(products)

print(productList.getProductListl())
")
print(productList.getProductList2())

27

.products])

© P. Lee, 2021

28

8. Control Flow

e Can be used with a list, a tuple, or a dictionary
e For dictionary, a key is checked.

print (1 in [1, 2, 3])
print (2 not in (1, 2, 3))

print ('apple' in { 'apple': 1, 'pear': 2})
print ('pear' not in { 'apple': 1, 'pear': 2})

e Branching based on the condition
e Executes the block of code when the condition is evaluated as True

import datetime
currentTime = datetime.datetime.now().hour

if currentTime < 12:
print(currentTime, 'Good morning")
else:
print(currentTime, 'Good afternoon')

getGrade(score):

grade = "'

if (score >= 90):
grade =

elif (score >= 80):
grade = 'B'

elif (score >= 70):
grade = '

elif (score >= 60):
grade = 'B'

© P. Lee, 2021

29

else:
grade =
return grade

scores = [89, 77, 56, 65, 95]
for score in scores:
print(score, getGrade(score))

e There is a shorthand if else statement.

a, b, c=5, 10, 0

if a > b:
= a
else:
max =
print(max)

max = a if a > b else b
print(max)

e The ternary if else statement does not need to be an assignment.

import datetime as dt

print('Good morning') if dt.datetime.now().hour < 12 else print('Good afternoon')

© P. Lee, 2021

30

e The while loop repeats the block of code while the condition is true.

number = 1
total = ©
while number <= 10:

total += number
number += 1

print(number, total)

e continue: stops the current iteration (ignores all the next code in the block) ,
and continues with the next iteration
e break: stop the loop immediately and exit the block, no more iteration

countOfOddNumbers = ©
number = 0

while
number += 1
if number % 2 == 0:
continue
countOfOddNumbers += 1
print(f'Inside the loop: {number}, {countOfOddNumbers}")
if countOfOddNumbers == 10:
break

print(f'Outside the loop: {number}, {countOfOddNumbers}")

© P. Lee, 2021

31

9. Functions

A function is a block of code that can be reused without repeating it.

The def keyword is used to start the definition of a function.
The name of the function.

(Parameter lists)

A block of code to run when the function is called.

Parameters and Arguments

e Parameters: the variable names for the input for a function. They are just
variable names that can be used inside of a function and point to the data.

e Arguments: the real data that are passed to a function when the function is
called or executed.

say_hello(name):
print(f'Hello, {name}")

names = ['Homer', 'Bart']

for name in names:

say_hello(name)

A function can return a single value back to the caller using the return statement.

e When you call (execute) a function, you need to assign a return value to a
variable.

© P. Lee, 2021

32

add(a, b):
return a + b

result = add(10, 20)
print(result, type(result))

[Problem 1] Do not return a value when it is required.

e If there is no return value, the function returns None.

add(a, b):
c=a+b

result = add(10, 20)
print(result, type(result))

[Problem 2] Return statement finishes a function

e When a function reaches the return statement, the function returns a value to a
caller and exits the function. Any code after the return statement is ignored.

add(a, b):
return 'This is add function.'
c=a+b
return c

result = add(10, 20)

print(result, type(result))

© P. Lee, 2021

33

Using keyword arguments

¢ Send arguments with the parameter name = argument value syntax.
e The order of the arguments does not matter.
e Positional arguments must be placed before keyword arguments.

product(name, price):
print(f'{name} is {price} dollars")

product('Bread’, 4)
product('Milk', price=5)

product(price=1, name="'Apple")
product(name="'Apple', price=1)

Default values

¢ In general, the number of arguments should match the number of parameters.
e By specifying the default value in the function definition, the argument becomes
optional.

product(name, price=1):
print(f'{name} is {price} dollars")

product('Bread")
product('Milk", 5)

e You can call the function inside of its function.
e Inside of a function, there is a condition to end the recursive function calls. Be
careful not to call the function indefinitely.

© P. Lee, 2021

(Example) Fibonacci Sequence: 1,1,2,3,5,8,13 ...

f(0) =0
f(1) =1
f(2) = f(0) + f(1) = 2
f(3) = f(1) + f(2) = 3
f(4) =f(2) + f(3) =5

fibonacci(n):
if n <= 0:
return @
elif n ==
return 1
else:
return fibonacci(n-2) + fibonacci(n-1)

for n in range(11):
print(f'{n} - {fibonacci(n)}")

34

© P. Lee, 2021

35

10. Modules

A module is a separate code that is located in a file for reuse.

e A Python module is saved in a file with the file extension .py

add(a, b):
return a + b

3.14

import mymodule

print(mymodule.add(1,2))
print(mymodule.PTI)

To use a module in a different module, you need to import the module before using
it.

¢ Once a module is imported, you can use classes, functions, and variables in the
module.
e There are a couple of ways to import a module.

import math

print (math.pi)
print (math.sin(math.pi))

© P. Lee, 2021

36

import math as m

print (m.pi)

from math import pi, cos

print (cos(pi))

from math import pi as phi, cos as ¢, sin

print (phi)
print (c(phi), sin(phi))

In some cases, you can import everything from a module so that you do not need
to specify the module name.

from math import *

print (round(1.4), round(1.5), round(-1.4), round(-1.5))
print (floor(1.4), floor(1.5), floor(-1.4), floor(-1.5))
print (ceil(1.4), ceil(1.5), ceil(-1.4), ceil(-1.5))

print (trunc(1.4), trunc(1.5), trunc(-1.4), trunc(-1.5))

print(hypot(3, 4))

print(radians(45), radians(90), radians(189))

print(sin(radians(9)), sin(radians(30)), sin(radians(90)))
print(sin(@), sin(pi/6), sin(pi/2))
print(cos(@), cos(pi/6), cos(pi/2))

© P. Lee, 2021

37

Checking module name:

e Use the built-in variable: _ _name___
e The starting module has a nhame: _ _main___

add(a, b):
print(__name_)
return a + b

import mymodule as my_math

print(__name_)
print(my_math.add(1,2))

Python provides many built-in modules.

e The dir(...) function can be used to show the entities (variable, functions, and
classes) of the module or a class.

import platform
import datetime as dt

print(dir(platform))
print(dir(dt))
print(dir(dt.datetime))

import platform
import datetime as dt

print(platform.system())
print(platform.machine())
print(platform.processor())
print(platform.python_version())

print(dt.datetime.now())

© P. Lee, 2021

38

11. OOP (Object Oriented Programming)

A class defines the common attributes and behaviors shared by its objects.

e Methods: the same behaviors
e Properties: the same attributes

An object is an instance of a class.

¢ An object can be uniquely identified by its name, and it defines a state which is
represented by the values of its properties at a particular time.

Generally, the name of a class starts with an upper case, and a variable name of an
object starts with a lower case.

The dir(..) function shows all entities (variables and methods).

Person:
pass

print(dir(str))
print()
print(dir(Person))

[Note] Even an empty class has many members already. Python constructs the
basic structure for you.

Any members that start with the double underscore (__) are used only inside of a
class code. You cannot access these members from outside using an object variable.

© P. Lee, 2021

39

e Constructor: __init__ (self, ...)
o __init__() : 'double underscore'
o always automatically executed when the class is being initiated (when an
object is created)
e Inside the _ init__, define properties that can be used inside of a class.

e The self parameter is used to access properties and methods inside of a class.
e The self parameter must be the first parameter of class methods.
o When a method is called, the caller does not send the argument for the
self parameter. It is automatically assigned by a Python runtime.

e Properties are the data inside of a class.
o Properties are defined in the __init__ method.
e You can read and write properties directly from inside of a class or through an
object.
e You need to use the self parameter to access properties inside the class.

class Car:
def __init__ (self, model, color):
self.model model
self.color color

def getInfo(self):
return f'{self.model} - {self.color}'

def changeColor(self, newColor):
self.color = newColor

© P. Lee, 2021

40

from mymodule import Car

car = Car('Civic', 'Red")
print(car.getInfo())
car.changeColor('Yello")
print(car.getInfo())

You need to use the object variable to access properties outside the class.

e It is possible to access the properties outside of a class definition.
e Butin general, it is not a good idea to access properties directly from outside of
a class.

Car:

__init_ (self, model, color):
.model = model
.color = color

from mymodule import Car

car = Car('Civic', 'Red")
print(f'{car.model} - {car.color}')
car.color = 'Yello'
print(f'{car.model} - {car.color}")

Functions defined in a class do actions.

e The first parameter of a method must be self.

o When you call the method, the caller does not send an argument for the
self parameter. Python run-time sends an object reference as an
argument automatically.

e A method can access properties and other methods of a class through the self
parameter.

© P. Lee, 2021

a1

Car:

__init_ (self, color, model):
.color = color
.model = model
.maxSpeed = 100

print(self):
print(f'My .color .model} can run up to .maxSpeed} kms/h.")

from mymodule import Car

myCar = Car(color="white', model="Civic")
myCar.print()

BankAccount:

__init__ (self):
.amount = ©
.interestRate = 0.01

deposit(self, amount):

.amount += amount

withdraw(self, amount):
.amount -= amount

getBalance(self):
return .amount * (1 + .interestRate)

© P. Lee, 2021

42

from mymodule import BankAccount

acc = BankAccount()
print(type(acc))

print(f'My balance is {acc.getBalance()}")

acc.deposit(1000)
print(f'My balance is {acc.getBalance()}")

acc.withdraw(500)
print(f'My balance is {acc.getBalance()}")

© P. Lee, 2021

43

12. OOP - Encapsulation

The main benefit of OOP is hiding the complex implementation details inside the
class code.

e The user of a class does not need to know the inner details of a class.
e A user needs to know how to create an object and which methods to call to
perform the desired actions.

Encapsulation means hiding details.

e By default, you can access any properties and methods using an object variable.

e The best practice is to hide properties inside the property. In python, if the
property variable name starts with an underscore *_’, it is a signal that you
should not access this property outside of a class code.

Let’s revisit the previous Bank Account code and modify the class using the
underscore property name.

BankAccount:

__init_ (self):
._amount = 0
._interestRate = 0.01

deposit(self, amount):

._amount += amount

withdraw(self, amount):
._amount -= amount

getBalance(self):
return ._amount * (1 + ._interestRate)

It is still allowed to access the property directly.

© P. Lee, 2021

44

from mymodule import BankAccount
acc = BankAccount()

acc._amount = 2000

print(f'My balance is {acc.getBalance()}")

[Note] All Python developers are aware that any properties start with an underscore
should not be accessed directly. It is a common practice.

© P. Lee, 2021

45

13. OOP - Composition

"Has A" relationship

e Composition is a relationship between object. An object can have other objects
as its properties.

Song:
__init_ (self, title):
._title = title

getSongInfo(self):
return f'Song - ._title}’

MusicAlbum:
__init_ (self, title, songs):

._title = title
._songs = songs

getAlbumInfo(self):
result = f'Album - . \n'

result += '\n'.join([song.getSongInfo() for song in ._songs])
return result

from mymodule import Song, MusicAlbum

songl = Song('Happy Tune')
song2 = Song('Loud Loud")
song3 = Song('Piano Concerto')

songs [songl, song2, song3]

album = MusicAlbum('My Music', songs)

print(album.getAlbumInfo())

© P. Lee, 2021

46

When you print the object, it shows the internal state of an object. It is the
representation of the current state.

Song:
__init_ (self, title):
._title = title

songl = Song('Best")
song2 = Song('Best")
print(songl)
print(song2)

The default representation of an object shows the module name, the class hame
and the memory address of an object.

¢ Notice that each object has a different memory address.
e In general, this information does not show the status of an object.

<__main__.Song object at 0x000002116BF30100>
<__main__.Song object at Ox000002116BF30DCO>

To provide the custom representation, you can override the _ _repr__ function in a
class.

e It returns a string value to represent the current status of an object.

Song:
__init_ (self, title):
._title = title

__repr__(self):
return f'This is a Song -

setTitle(self, newTitle):
._title = newTitle

songl = Song('Best")
print(songl)

songl.setTitle('Just Loud")
print(songl)

© P. Lee, 2021

47

14. OOP - Inheritance

"Is A" relationship

e Inheritance allows a class to inherit all the methods and properties from another
class.
o Parent class or base class
o Child class, derived class or sub-class

Defining a child class

e The properties in a parent class need to be initialized by calling super().__init__ ()
e Itis important to call the constructor of a parent class inside of a child.
e You can add any extra properties inside the constructor of a child class.

Person:

__init_ (self, firstName, lastName):
._firstName = firstName
._lastName = lastName

Employee(Person):
__init_ (self, firstName, lastName, department):
super().__init_ (firstName, lastName)
._department = department

describe(self):
return f' ._firstName} - ._lastName} - ._department}’

from mymodule import Employee, Person

emp = Employee('A’, 'B', 'Finance')
print(emp.describe())

Let’s improve the previous example.

What if the Person class also has a describe() method and the Employee class
wants to use it? Both a child and a parent have the method with the same name.

e The child class inherits all methods and properties.
o The child can use the self parameter to access the parent.

© P. Lee, 2021

48

e super() function
o If a parent and a child have the method with the same name, using self
inside a child only calls the method in a child.
o Inside a child class, you can call access the methods in a parent using the
super() function.

e Also, you can update the __repr___ function to provide a better description.

Person:

__init_ (self, firstName, lastName):
._firstName = firstName
._lastName = lastName

describe(self):
' ._firstName} - ._lastName

return

__repr__(self):
return .describe()

Employee(Person):
__init_ (self, firstName, lastName, department):
super().__init_ (firstName, lastName)
._department = department

describe(self):
return f'{super().describe()} - ._department}’

getParentInfo(self):
return super().describe()

getChildInfo(self):
return .describe()

__repr__(self):
return .describe()

© P. Lee, 2021

from mymodule import Employee, Person

emp = Employee('A’, 'B', 'Finance')
print(emp.describe())

print(emp.getParentInfo())
print(emp.getChildInfo())

person = Person('C', 'D")
print(person)
print(emp)

49

© P. Lee, 2021

50

15. OOP - Polymorphism

If classes have the same method name, you can call it without knowing which
object you are using.

Dog():
cry(self):
return f'Bark! Bark!'

Tiger():
cry(self):

return f'Uh Hung!'

from mymodule import Dog, Tiger

animals = [Dog(), Tiger()]
for animal in animals:
print(animal.cry())

Method Overriding with inheritance

e The child class can use the same method name but it will replace the parent one.

Animal:
fly(self):
return 'Not sure.'

Bird(Animal):
fly(self):
return 'I can fly.'

Dog(Animal):
fly(self):
return 'I cannot fly.'

© P. Lee, 2021

51

from mymodule import Animal, Bird, Dog

animals = [Animal(), Bird(), Dog()]
for animal in animals:
print(animal.fly())

© P. Lee, 2021

52

16. OOP - Example

Shopping Cart Application

Orderltem ShoppingCart
Person productName customer
price orderltems

firstName quantity

lastName
__init__(customer)

—init_(productName, price=0, quantity=0) addToCart(orderltem)
getOrderiteminfo() removeFromCart(productName)
getTotalPrice() getTotal Amount()

_eq__(other) getCartinfo()

__init_(firstName, lastName)
getFullName()

Customer

email

__init_({firstName, lastName, email)
getCustomerinfo()

__init_ (self, firstName, lastName):
._firstName = firstName
._lastName = lastName

getFullName(self):
._firstName ._lastName

© P. Lee, 2021

Customer(Person):
__init_ (self, firstName, lastName, email):
super()._ _init (firstName, lastName)
._email = email

getCustomerInfo(self):
return f' .getFullName()} -

OrderItem:

__init__ (self, productName, price=0, quantity=0):
._productName = productName
._price = price
._quantity = quantity

getOrderItemInfo(self):
info = f' ._productName} - $._price per each'
info += f', Quanity: ._quantity}'
info += f', Amount: $.getTotalPrice()
return info

getTotalPrice(self):
return ._price * ._quantity

__eq__(self, other):
return ._productName.lower() == other. productName.lower()

ShoppingCart():

__init_ (self, customer):
._custoemr = customer
._orderItems = []

addToCart(self, orderItem):
._orderItems.append(orderItem)

removeFromCart(self, productName):

itemToRemove = OrderItem(productName)
._orderItems.remove(itemToRemove)

© P. Lee, 2021

54

getTotalAmount(self):
total = @
for item in ._orderItems:
total += item.getTotalPrice()
return total

getCartInfo(self):
info =
info += f'Customer: ._custoemr.getCustomerInfo()} \n'
info +=
info += f'Total Price: $.getTotalAmount () \n'
info += '\n'.join([item.getOrderItemInfo() for item in ._orderItems])
return info

Here is the main module now.

from mymodule import Customer, OrderItem, ShoppingCart

customer = Customer('John', 'Doe', 'jo@test.com')
cart = ShoppingCart(customer)

cart.addToCart(OrderItem('Bread', 3.50, 3))
cart.addToCart(OrderItem('Milk"', 6.99, 1))
cart.addToCart(OrderItem(Pizza', 10.99, 1))
cart.addToCart(OrderItem('Ice Cream', 5.22, 2))
print(cart.getCartInfo())

cart.removeFromCart('Pizza")
print(cart.getCartInfo())

© P. Lee, 2021

55

17. Sample applications with the random module

Python has a built-in module that you can use to generate random numbers.

Generating random numbers

import random as r

for n in range(10):
print(r.random())

import random as r

for n in range(10):
print(r.randint(1, 6))

Selecting an item randomly from a list

import random as r

fruits = ['apple', 'pear', 'mango', 'banana’]

for n in range(10):
print(r.choice(fruits))

© P. Lee, 2021

56

Randomizing the order of a list

import random as r

numbers = list(range(10))
print(numbers)

for n in range(10):
r.shuffle(numbers)
print(numbers)

Guessing Number Game

import random as r

answer = r.randint(1, 100)

tryCount = @
while
tryCount += 1
guess = int(input('Guess the number? "))
if guess == answer:
break
elif guess > answer:
print('Too big.")
else:
print('Too small."')

print(f'Correct! The answer is {answer} and you tried {tryCount} times.')

© P. Lee, 2021

57

18. Python Advanced Features - Dictionaries

Dictionary is very powerful and can be used in many different ways.

Getting keys and values as a list

e The return value of keys() and values() is not a list object. You can convert it to
a list.

e You can loop through keys and values easily without converting to a list object.
It works the same way.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

print(states.keys())
print(list(states.keys()))

for key in states.keys():
print(key)

print()
print(states.values())
print(list(states.values()))

for key in states.values():
print(key)

Converting a dictionary into a list of tuples

e Each item in a dictionary becomes a tuple.
o The key becomes the first value
o The value becomes the second value
e The return value of items() is not a list object. But you can loop through it.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

print(states.items())

statesList = list(states.items())
print(statesList)

© P. Lee, 2021

58

for state in states.items():
print(state, state[0], state[1])

for state in list(states.items()):
print(state, state[0], state[1])

There is another way to loop through a dictionary using items() method.

e Check another Python syntax to assign a values in a list to multiple variables.

fruits = ['apple’', ‘pear', 'mango’', 'banana’]

a, p, my, b = fruits

print(a, p, m, b)

e For a dictionary, you need to items() function to access the each item.

{'AK":"'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

a, ¢, f, n = states.items()

print(a, c, f, n)
print(type(a))

print(a[@], c[@], f[e], n[@])
print(a[1], c[1], f[1], n[1])

© P. Lee, 2021

59

e Let’s loop through a dictionary.
o The loop variable only contains the key value.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

for state in states:

print(state, states[state])

e With jtems() function and multiple variables, you can access the key and value
at the same time.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

for key,value in states.items():
print(key, value)

¢ The following short names are commonly used.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

for (k,v) in states.items():
print(k, v)

Just like a list comprehension, you can transform one dictionary to another
dictionary.

e Syntax 1: for key in dictionary

© P. Lee, 2021

60

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

statesOpposite = { states[key]: key for key in states }
print(statesOpposite)

e Syntax 2: for (key, value) in dictionary
o For a dictionary comprehension, the items() is commonly used.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

statesOpposite = { v: k for (k,v) in states.items() }
print(statesOpposite)

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}
statesUpperCase = { k: v.upper() for (k,v) in states.items() }
print(statesUpperCase)

e Syntax 3: for (key, value) in dictionary if condition
o You can filter the items using the condition.

states = {'AK':'Alaska', 'CA':'California', 'FL':'Florida', 'NY':'New York'}

someStates = { k: v for (k,v) in states.items() if k ('CA', '"FL") }
print(someStates)

© P. Lee, 2021

61

19. Python Advanced Features - Lambda

A lambda is a small function without a name -- an anonymous function.

e It must return a result.

o It can have only 1 expression without a return keyword.
o The result will be automatically returned.

add(a, b):
return a + b

adder =

print(type(add), add(3,4))
print(type(add), adder(3, 4))

Python’s filter() function is used to create a subset of a sequenced data (list or
dictionaries).

e filter(func, data)
o The first parameter is a function that returns a Boolean value. (any item
that matches the condition will be returned as part of a new list)
o The second parameter is a list or a dictionary.
o The return value is a filter object. You need to convert the result back to
a list or a dictionary.
o The filter() a global function. You do not need to import any module.

isOddNumber (number) :
return number % 2 ==

numbers = [1,2,3,4,5,6,7,8,9,10]
oddNumbers = list(filter(isOddNumber, numbers))
print(oddNumbers)

© P. Lee, 2021

62

With a lambda function, you do not need to create a separate function. And the
code becomes clearer.

numbers = [1,2,3,4,5,6,7,8,9,10]

oddNumbers = list(filter(n : n%2 == 1, numbers))
print(oddNumbers)

Filtering can be done using the list comprehension.

numbers = [1,2,3,4,5,6,7,8,9,10]

oddNumbers = [n for n in numbers if n%2 == 1]
print(oddNumbers)

The filter() function can be used with a dictionary.

fruits = {'apple':2, 'pear':1.5, 'mango':2.5, 'banana':0.9}

expensiveFruits = dict(filter(£ : f[1] >= 2, fruits.items()))
print(expensiveFruits)

You can get the same result using the dictionary comprehension.

fruits = {'apple':2, 'pear':1.5, 'mango':2.5, 'banana‘':0.9}

expensiveFruits = {k:v for (k,v) in fruits.items() if v >= 2}
print(expensiveFruits)

© P. Lee, 2021

63

[Note]

e Use the comprehension - it is preferable.
e But you might see the code with the filter() function and you need to understand how it
works.

Python’s map() function is used to transform a list to another list.

e map(func, data)
o The first parameter is a function that returns an item for a new list or a
dictionary.
o The second parameter is a list or a dictionary.
o The return value is a map object. You need to convert the result back to a
list.
o The map() is a global function. You do not need to import any module.

fruits = ['apple', 'pear', 'mango', 'banana’]

lengths = map(f : len(f), fruits)

print(lengths, type(lengths))

lengthsList = list(map(f : len(f), fruits))
print(lengthsList, type(lengthslList))

[Note]

e Use the comprehension - it is preferable.
e But you might see the code with the map() function and you need to understand how it
works.

e The only case you want to use the map() function is to combine 2 or more lists
into a single list.

numbersl = list(range(11))
numbers2 = list(range(10,0,-1))
print(numbersl, numbers2)

sumNumbers = list(map(nl, n2: nl + n2, numbersl, numbers2))
print(sumNumbers)

© P. Lee, 2021

64

Python’s reduce() function is used to accept a sequence of data (a list) and returns
a single item.

e The first 2 items are passed to a provided function. The result is returned.

e The specified function is called with the previous result and the next item.

e The reduce() function is located in the functools module. You need to import the
module first.

e Syntax: reduce(function, sequence, initialValue)
o function: accepts 2 values and returns a single value
o sequence: a data as a list
o initialvValue: optional. If this value is provided, the function is called
with this initial value and the first item.

from functools import reduce

numbers = list(range(101))

total = ©

for n in numbers:
total += n

print(total)

total = reduce(a,b: a+b, numbers)
print(total)

Here is another example - get the maximum value in a list.

from functools import reduce

numbers = [1, 33, 22, 12, 56, 3, 26, 45]

max = reduce(a,b: a if a > b else b, numbers)
print(max)

© P. Lee, 2021

65

20. Error Handling

Every programming language has a mechanism to handle errors or exceptions.

e An exception is a term to describe an event, which occurs during the execution
of a program that disrupts the normal flow of the program's instructions.

e A variable needs to be created before using it.

e or you cannot divide a number by 0

e Put the code inside the try block

¢ When the code in the try block raises an error, the except block will be executed
rather than crashing the application

¢ Without an except block, the program will crash when an error happens.

try:
y =10 / ©

except:
print('Something bad happened. ")

e You can define multiple except blocks for a special kind of error.
¢ Only the first matching except block will be executed.
o Important! Only 1 except block is executed. (first matching)
e The except block without a special type name will be executed for any type of
error.

© P. Lee, 2021

66

try:

y =10/ ©
except ZeroDivisionError:

print('You cannot divide a number by zero.')
except:

print('Something bad happened. ")

try:

print(x)
except ZeroDivisionError:

print('You cannot divide a number by zero.')
except:

print('Something bad happened. ")

¢ When there is no error, the else block will be executed.
e The finally block will be executed regardless there is an error or not.
o The finally block is executed all the time.

print(x)
except:

print('Something bad happened.")
else:

print('No Error.")
finally:

print('The end of the code.")

try:
print(x)
except NameError:
print('The undefined variable is used.')
else:
print('No Error.")
finally:
print('The end of the code.")

© P. Lee, 2021

67

You can get an error object using the as keyword (followed by a variable name).

try:
print (x)

except NameError as ne:
print(ne)

try:
y =10 / ©

except ZeroDivisionError as zde:
print(zde)

You can raise a custom error using the raise keyword and Exception class.

number = int(input('Enter the number from 1 to 10: "))
try:
if (number > 10):
raise Exception('Your number is greater than 10.")

elif (number < 1):
raise Exception('Your number is less than 1.")
print(number)
except Exception as e:
print(e)

© P. Lee, 2021

68

21. Handling Text Files

In Python, you can create, read, and update the files.

Files can be 2 types:

e Text files: have only text data — you can open the file in any text editor and read
the content of it.

e Binary files: no text data, can be opened only in a specific applications that
support the file types, images, or videos

Python has an open() functions that creates and/or opens a file for reading or
writing. The function is global. You do not need to import a module.

e open(filename, mode)
e mode:
o r - Read: Default value. Opens a file for reading. Raises an error if the file
does not exist
o a - Append: Opens a file for appending and creates the file if it does not
exist
o W - Write: Opens a file for writing and creates the file if it does not exist
o X — Create: Creates the specified file and returns an error if the file exists

After accessing the file, you must close the file.

e file.close()

f = open("myfile.txt", "w")
print(type(f))

f.close()

© P. Lee, 2021

69

It is easy to write a text to file.

o file.write()

f = open("myfile.txt", "w")

f.write('Hello World!111")

f.close()

e The file must be closed. You can use the "with" sentence.
e If you open a file using a “with” block, the close() function is called automatically
at the end of the block.

with open("myfile.txt", "w") as f:

f.write('Good Morning!")

o file.read()
e file.readline()
e file.readlines()

Let’s create a file and write a couple of lines of text before reading the file.

with open("myfile.txt", "w") as f:
f.write('Hello\n")

f.write('World\n")
f.write('Good\n")
f.write('Morning")

© P. Lee, 2021

70

Reading everything in a file

with open("myfile.txt", "r") as f:

content = f.read()
print(content)

Reading text line by line

with open("myfile.txt", "r") as f:
linel = f.readline()
line2 = f.readline()
print(linel)
print(line2)

The readline() function reads a line of text but it includes the new line *\n’ character.

with open("myfile.txt", "r") as f:
linel = f.readline()
line2 = f.readline()
print(linel.strip())
print(line2.strip())

What if you do not know how many lines to read?

¢ Read everything line by line as a list

with open("myfile.txt", "r") as f:
lines = f.readlines()
print(type(lines))
print(lines)

trimmedLines = [line.strip() for line in lines]
print(trimmedLines)

© P. Lee, 2021

71

There is a short-cut syntax without using the readlines() function.

with open("myfile.txt", "r") as f:

trimmedLines = [line.strip() for line in f]
print(trimmedLines)

e Import the “0s” module
e Use the remove(filename) function

import os

os.remove('myfile.txt")

What if the file does not exist when you try to open a file for reading?

with open("myfile.txt", "r") as f:

content = f.read()

Using the try — except blocks

try:
with open("myfile.txt", "r") as f:

content = f.read()
except FileNotFoundError:
print('The file does not exist.')

© P. Lee, 2021

72

Read fruit names from a file and then put them in a list.

with open("myfile.txt", "w") as f:
f.write('Apple,Pear,Mango,Banana’)

with open("myfile.txt", "r") as f:
fruitsText = f.read()
fruits = fruitsText.split(',")
print(len(fruits))
for fruit in fruits:
print(fruit)

Try to understand how the code works.

GreetMachine:
__init__ (self, name):
._hame = name

sayHello(self):
return f'Hello,

from mymodule import GreetMachine

with open("myfile.txt", "w") as f:
f.write('Ddung\n")
f.write('Hyang\n")
f.write('Babo")

with open("myfile.txt", "r") as f:
for line in f.readlines():
greeting = GreetMachine(line.strip())
print(greeting.sayHello())

© P. Lee, 2021

73

22. OOP Advanced - Decorators and Properties

Python has a strange but interesting feature called decorators.

e Decorators change the behavior of your code by attaching @---
e Decorators are called meta-programming because they program the program!

This section is the extension to the OOP -Encapsulation.

e Properties are the data part of an object.

e You can start the name of a property variable with an underscore to specify that
the property can only be accessed inside the class code.

e To provide access to a property, you need to create functions - getters and
setters.

Food():
__init_ (self, name):
._nhame = name

getName(self):
return ._hame

setName(self, name):

if len(name) >= 3:
._nhame = name

from mymodule import Food

p = Food('Bread")
print(p.getName())

p.setName('Milk")
print(p.getName())

p.setName('A")
print(p.getName())

© P. Lee, 2021

74

e Important! The getters and setters are methods. You need to use “()” to call
methods.

Python provides a way to convert a getter or setter to act as a variable.

e For a getter, attach @property to the method
e For a setter, attach @---.setter to the method

Food():
__init_ (self, name):
._name = name

@property
name(self):
return ._hame

@name.setter
name(self, name):

if len(name) >= 3:
._hame = name

from mymodule import Food

p = Food('Bread")
print(p.name)

p.name = 'Milk'
print(p.name)

p.name = ‘A’
print(p.name)

e Important! The name is used like a variable.
e You do not need to use the property decorators. But it is good to know what
they are because they are used in many built-in modules.

© P. Lee, 2021

75

Another strange conversion is to a method in a class.

e You need to create an object in order to call the method defined in a class code.
¢ Using a @staticmethod decorator, you can call the method without an object.

o You can call the method directly by className.methodName()

o A static method does not need the first parameter self.
e A static method is used when the information is the same for all objects.

BankAccount():
__init_ (self, amount):
._amount = amount

@property
amount(self):

return ._amount

getTotal(self):
return ._amount * (1 + BankAccount.getInterestRate())

@staticmethod
getInterestRate():
return 0.02

Static method can be called without an object.

from mymodule import BankAccount

print(BankAccount.getInterestRate())

Check how the BankAccount class can be used.

from mymodule import BankAccount

print(BankAccount.getInterestRate())

accountl = BankAccount(1000)

account2 = BankAccount(2000)
print(accountl.amount, account2.amount)
print(accountl.getTotal(), account2.getTotal())

© P. Lee, 2021

76

@classmethod is another decorator that can be called without an object.

e The first parameter is special, and it is not “self”.

o The first parameter represents a class, and you can use it to create an
object.

e @classmethod is used to provide different ways to create an object using
different parameters.

Person():

__init_ (self, firstName, lastName):
._firstName = firstName
._lastName = lastName

@property
fullName(self):
return f' ._firstName ._lastName}"

@classmethod
createPersonFromFullName(cls, fullName):
firstName, lastName = fullName.split(' ')
return (firstName, lastName)

@classmethod
createPersonFromList(cls, fullNamelList):
firstName, lastName = fullNamelList
return (firstName, lastName)

mymodule import Person

Person('A', 'B")
Person.createPersonFromFullName('C D")
Person.createPersonFromList(['E', 'F'])

print(pl.fullName)
print(p2.fullName)
print(p3.fullName)

© P. Lee, 2021

77

23. datetime module
Using date and time in programming is tricky because it has many parts.

e The datetime class is used to represent the date and time in Python.
e The datetime class is located in the datetime module.

You need to import the datetime module.

import datetime as dt

print(dt.MINYEAR, dt.MAXYEAR)
print()

Use the now() method to get the current date and time.

e The now() method is a class method to create a datetime object using the
current system time.

@classmethod
now(cls, tz=):
"Construct a datetime from time.time() and optional time zone info."
t = _time.time()
return .fromtimestamp(t, tz)

Access date and time data using the datetime properties.

@property

year(self):
lIlIlIyear‘ (1_9999)"””
return ._year

© P. Lee, 2021

78

@property
month(self):
"""month (1-12)"""
return ._month

@property
day(self):
""tday (1-31)"""
return ._day

Here is the example of how to get the current date and time using the datetime
object.

import datetime as dt

current = dt.datetime.now()

print(current, type(current))

print(current.year, current.month, current.day)
print(current.weekday())

print(current.hour, current.minute, current.second)

Create a datetime object with specific date and time.

import datetime as dt

b = dt.datetime(2000,12, 25)
print(b)

c = dt.datetime(2000,12, 25, 11, 10, 59)
print(c)

In programming, it is important to know how to compute time difference (delta)
between two datetime objects.

e The timedelta object is used.

© P. Lee, 2021

79

import datetime as dt

now = dt.datetime.now()
currentYear = now.year
past = dt.datetime(currentYear,1, 1)

delta = now - past
print(delta, type(delta))
print(delta.days)

Another example of timedelta object is the stopwatch.

import datetime as dt
import time

timel = dt.datetime.now()

time.sleep(3)

time2 = dt.datetime.now()

delta = time2 - timel
print(delta.seconds)
print(delta.microseconds)

Final point is how to format the datetime object to a string.

e This is complex but important.
e The format uses the % code.
e strftime() method is used to specify the format.

e Year: %Y (full - 2020), %y (short - 20)

e Month: %B (full - December) %b (short - Dec) % m
(number - 12)

e Day: %d (number - 31)

© P. Lee, 2021

80

e Weekday: %A (full - Wednesday) %a (short - Wed)
e Hour: %H
e Minute: %M
e Second: %S

import datetime as dt

now = dt.datetime.now()

print(now)

print(now.strftime('%Y %B)
print(now.strftime(' %y-%b-%d %A"))
print(now.strftime(' %B/%d/%Y %H:%M:%S"'))

The full list is here. datetime — Basic date and time types — Python 3.9.5
documentation.

© P. Lee, 2021

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

81

24. Operator Overloading - Advanced

You can provide your own logic to check the object equality by modifying the
_eqg__() method.

¢ And then, you can compare 2 objects of the same class using the equality
operator ==,

Python provides the mechanism to provide the mechanism to use any operator with
your custom objects.

Let’s start with the custom class.

e Get a value
e truncate the value into an integer
e stores the absolute value inside an object

import math

AbsoluteInteger:
__init_ (self, value):
self. value = abs(math.trunc(value))

@property
value(self):
return self. value

mymodule import AbsoluteInteger

AbsoluteInteger(5.2)
AbsoluteInteger(5.7)
AbsoluteInteger(-5.2)
AbsoluteInteger(-5.7)

print(nl.value, n2.value, n3.value, n4.value)

© P. Lee, 2021

82

You can directly work on the value inside an object. But what if you are doing some
operations directly with objects themselves.

mymodule import AbsoluteInteger

AbsoluteInteger(5)
AbsoluteInteger(5)

print(nl == n2)
print(nl != n2)

Programming is what you tell a computer to do. When you do some operations (==,
+, -, >, or <), Python runtime calls the internal method to do the job.

e The internal method start and end with double underscores (_).

Here is an example: __eq_ ()

__eq__(self, other):
return self. value == other. value

print(nl == n2)
print(nl._ eq_ (n2))

© P. Lee, 2021

83
Here is how the operation works:

e Nl ==n2
O

Start from the object in the left: n1
o Callthe __eq__ method on n1

= Pass the object in the right: n2 - as an argument of the method
o The method returns a Boolean value (True or False)

In Python, you can override the default behavior of the operators by implementing
so called magic methods.

e Comparison Operators

Operator Magic Method
== __eg__ (self, other)
I= __ne__(self, other)
< __lt__ (self, other)
> _ gt (self, other)
<= __le__(self, other)
>= __ge__ (self, other)

import math

AbsoluteInteger:
__init_ (self, value):

abs(math.trunc(value))

self. value =

@property
value(self):
return self. value

__eq__(self, other):
return self. value == other._value

© P. Lee, 2021

84

__ne__ (self, other):
return self._value != other._value

__ 1t (self, other):
return self. value < other. value

__ gt (self, other):
return self._value > other._value

__le (self, other):
return self. value <= other._value

__ge_ (self, other):
return self. value >= other. value

from mymodule import AbsoluteInteger

AbsoluteInteger(5)
AbsoluteInteger(-6)

print(nl
print(nl !
print(nl
print(nl
print(nl
print(nl

e Arithmetic Operators

Operator Magic Method
+ __add__ (self, other)
- __sub__ (self, other)
* __mul__ (self, other)
/ __truediv__ (self, other)
// __floordiv__ (self, other)
% __mod__ (self, other)
ok __pow__ (self, other)

© P. Lee, 2021

Implementing arithmetic operators needs to be more careful.

e Unlike comparison operators, which return a Boolean value, the arithmetic
operators can return anything: numbers, strings, or any kind of object.
e In general, return the same type of object.

import math

class AbsoluteInteger:
def __init_ (self, value):
self. value = abs(math.trunc(value))

@property
def value(self):
return self. value

def add_ (self, other):
return AbsoluteInteger(self. other._value)

def __sub__ (self, other):
return AbsoluteInteger(self. other._value)

def _ mul__ (self, other):
return AbsoluteInteger(self. other._value)

def __truediv__ (self, other):
return AbsoluteInteger(self. other._value)

def _ floordiv__ (self, other):
return AbsoluteInteger(self. // other. _value)

def __mod__ (self, other):
return AbsoluteInteger(self. % other. value)

def __pow__ (self, other):
return AbsoluteInteger(self. ** other. value)

mymodule import AbsoluteInteger

AbsoluteInteger(-5)
AbsoluteInteger(2)

© P. Lee, 2021

print(nl + n2)
print((nl
print((nl
print((nl

print((nl
print((nl
print((nl
print((nl

+ n2).value)
- n2).value)
* n2).value)
/ n2).value)
// n2).value)
% n2).value)
** n2).value)

86

© P. Lee, 2021

87

25. Working with Database with SQLite

Python provides the lightweight database engine SQLite.
e The “sqlite3” module is provided by default.

e It is easy to create a new database or connect to an existing database using the
connect() method.
e You need to get a cursor from the connection object to interact with a database.

import sqlite3

connection = sglite3.connect('employee.db")
print(type(connection))

cursor = connection.cursor()

print(type(cursor))

cursor.close()

connection.close()

e Database consists of tables. (like an Excel worksheet)

e The first step is to create a table by providing a structure. (what kind of data
can be stored)
o A table consists of columns.

© P. Lee, 2021

88

o You need to provide the data type for each column.
o SQLite provides the following data types:
= TEXT
= INTEGER
= REAL (floating point values)
o The “"CREATE" statement is used to create a table
e And then, you can add some data to the table.
o The “"INSERT"” statement is used to insert data into a table.
e The statements are executed using the execute() method of a cursor object.
e To save the data into a table, you need to confirm your actions by calling the
connection.commit().

import sqlite3

connection = sqlite3.connect('order.db")
cursor = connection.cursor()

cursor.execute(
CREATE TABLE IF NOT EXISTS orders (
id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
price REAL NOT NULL,
quantity INTEGER NOT NULL,
date TEXT NOT NULL

)

cursor.execute("INSERT INTO orders (id, name, price, quantity, date) VALUES (1,
Bread 1Lb', 2.99, 2, '2020-12-31"')")

cursor.execute("INSERT INTO orders (id, name, price, quantity, date) VALUES (2,
Milk 4L', 5.99, 1, '2021-1-1')")

cursor.execute("INSERT INTO orders (id, name, price, quantity, date) VALUES (3,
Eggs 12', 3.99, 1, '2020-2-27')")

connection.commit()

cursor.close()
connection.close()

© P. Lee, 2021

89

e You need to use the "SELECT” statement to read data from tables

One way to access the table is to read all data (rows) at one time.

import sqlite3

connection = sqglite3.connect('order.db")
cursor = connection.cursor()

cursor.execute('SELECT * FROM orders')
allData = cursor.fetchall()
print(allData, type(allData))

for index1l in range(len(allData)):
row = allData[index1]
print('\t', row, type(row))
for index2 in range(len(row)):
value = row[index2]
print("\t\t', value, type(value))

cursor.close()
connection.close()

Another way is to read each row one by one.

import sqlite3

connection = sqlite3.connect('order.db")
cursor = connection.cursor()

for row in cursor.execute('SELECT * FROM orders'):
print(row, type(row))
for index2 in range(len(row)):
value = row[index2]
print("\t', value, type(value))

cursor.close()
connection.close()

© P. Lee, 2021

90

Retrieving a value in a row using an index can be tedious and not clear which value
we are accessing.

e Set the connection's row_factory option to be sqglite3.Row.
¢ Now you can access the value using the column name.

import sqlite3
connection = sqglite3.connect('order.db")

connection.row_factory = sqlite3.Row
cursor = connection.cursor()

for row in cursor.execute('SELECT * FROM orders'):

print(row, type(row))
print("\t', row['id'])
print('\t', row['name'])
print("\t', row['price'])
print('\t', row['quantity'])
print('\t', row['date'])

cursor.close()
connection.close()

© P. Lee, 2021

